Publications
Export 190 results:
Filtry: Klíčové Slovo je MF [Clear All Filters]
Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave. J. Opt., 13, 044016:1–9 (2011).
. Static and dynamic behavior of two optically bound microparticles in a standing wave. Opt. Express, 19, 19613–19626 (2011).
. Diffusive Mixing of Polymers Investigated by Raman Microspectroscopy and Microrheology. Langmuir, 26, 14223-14230 (2010).
. Experimental and theoretical determination of optical binding forces. Opt. Express, 18, 25389–25402 (2010).
. . Particle jumps between optical traps in a one-dimensional optical lattice. New. J. Phys., 12, 083001:1–20 (2010).
. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett., 7, 378–383 (2010).
. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo. Sensors, 10, 8635–8651 (2010).
. Detecting Sequential Bond Formation Using Three-Dimensional Thermal Fluctuation Analysis. Chem. Phys. Chem., 10, 1541-1547 (2009).
. Direct Measurement of the Nonconservative Force Field Generated by Optical Tweezers. Phys. Rev. Lett., 103, 108101 (2009).
. Extreme axial optical force in a standing wave achieved by optimized object shape. Opt. Express, 17, 10472–10488 (2009).
. Longitudinal optical binding of several spherical particles studied by the coupled dipole method. J. Opt. A: Pure Appl. Opt., 11, 034009 (2009).
. .
Light at work: The use of optical forces for particle manipulation, sorting, and analysis. Electophoresis, 29, 4813–4851 (2008).
. . . Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination. New. J. Phys., 10, 113010 (2008).
. Analytical description of longitudinal optical binding of two spherical nanoparticles. J. Opt. A: Pure Appl. Opt., 9, S215–S220 (2007).
. Axial optical trap stiffness influenced by retro-reflected beam. J. Opt. A: Pure Appl. Opt., 9, S251–S255 (2007).
. Cellular and colloidal separation using optical forces. Methods in Cell Biology, 82, 467–495 (2007).
. Optical forces acting on a nanoparticle placed into an interference evanescent field. Opt. Commun., 275, 409–420 (2007).
. Optical tracking of spherical micro-objects in spatially periodic interference fields. Opt. Express, 15, 2262–2272 (2007).
. Opto-fluidic micromanipulation system based on integrated polymer waveguides. J. Optoel Adv. Mater., 9, 2148-2151 (2007).
. . .
Formation of long and thin polymer fiber using nondiffracting beam. Opt. Express, 14, 8506-8515 (2006).
. Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery. Appl. Phys. B, 84, 157–165 (2006).
. . Optical sorting and detection of sub-micron objects in a motional standing wave. Phys. Rev. B, 74, 035105:1-6 (2006).
. Sub-micron particle organization by self-imaging of non-diffracting beams. New. J. Phys., 8, 43 (2006).
. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett., 86, 174101-1–174101-3 (2005).
. . Optical forces acting on Rayleigh particle placed into interference field. Opt. Commun., 240, 401-415 (2004).
. Behaviour of an optically trapped probe approaching a dielectric interface. J Mod. Optics, 50, 1615-1625 (2003).
. Theoretical comparison of optical traps created by standing wave and single beam. Opt. Commun., 220, 401-412 (2003).
. Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. J. Opt. Soc. Am. A, 19, 1025-1034 (2002).
. .
Optical trapping of nanoparticles and microparticles using Gaussian standing wave. Opt. Lett., 24, 1448–1450 (1999).
. Atomic dipole trap formed by a blue detuned strong Gaussian standing wave. Opt. Commun., 146, 119–123 (1998).
. Optical trapping of Rayleigh particles using a Gaussian standing wave. Opt. Commun., 151, 273–285 (1998).
. Stránky
- « první
- ‹ předchozí
- 1
- 2
- 3
- 4