Publications
Export 30 results:
Filtry: Autor je Jan Ježek [Clear All Filters]
.
Rapid Identification of Pathogens Causing Bloodstream Infections by Raman Spectroscopy and Raman Tweezers. Microbiology Spectrum, 11, e00028-23 (2023).
. Raman spectroscopy—a tool for rapid differentiation among microbes causing urinary tract infections. Analytica Chimica Acta, 1191, 339292 (2022).
. .
Detection of chloroalkanes by surface-enhanced raman spectroscopy in microfluidic chips. Sensors, 18, 3212 (2018).
Enhancement of the `tractor-beam' pulling force on an optically bound structure. Light: Sci. Appl., 7, 17135 (2018).
. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E-coli under Antibiotic Stress. Sensors, 18, 1623 (2018).
. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy. Future Microbiology, 12, 10 (2017).
Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System. Sensors, 17, 2640 (2017).
. Morphological and Production Changes in Planktonic and Biofilm Cells Monitored Using SEM and Raman Spectroscopy. Microscopy and Microanalysis, 23, S1 (2017).
Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators. J. Opt. Soc. Am. B, 34, 1855-1864 (2017).
. Direct measurement of the temperature profile close to an optically trapped absorbing particle. Opt. Lett., 41, 870-873 (2016).
Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors, 16, 1808 (2016).
Identification of individual biofilm-forming bacterial cells using Raman tweezers. J. Biomed. Opt., 20, (2015).
Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors, 15, 29635-29647 (2015).
SEM and Raman Spectroscopy Applied to Biomass Analysis for Application in the Field of Biofuels and Food Industry. Microscopy and Microanalysis, 21, 1775-1776 (2015).
. Candida parapsilosis Biofilm Identification by Raman Spectroscopy. Int. J. Mol. Sci., 15, 23924-23935 (2014).
Following the mechanisms of bacteriostatic versus bacericidal action using Raman spectroscopy. Molecules, 18, 13188-13199 (2013).
Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Opt. Lett., 38, 4601-4604 (2013).
Optical trapping of microalgae at 735–1064 nm: Photodamage assessment. J. Photochem. Photobiol. B, 121, 27 - 31 (2013).
. Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Opt. Express, 21, 21380-21394 (2013).
. Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectrochim. Acta B, 74-75, 169-176 (2012).
. Raman microspectroscopy of algal lipid bodies: beta-carotene quantification. J. Appl. Phycol., 24, 541-546 (2012).
. Axial optical trap stiffness influenced by retro-reflected beam. J. Opt. A: Pure Appl. Opt., 9, S251–S255 (2007).
. Opto-fluidic micromanipulation system based on integrated polymer waveguides. J. Optoel Adv. Mater., 9, 2148-2151 (2007).
. Formation of long and thin polymer fiber using nondiffracting beam. Opt. Express, 14, 8506-8515 (2006).
. Behaviour of an optically trapped probe approaching a dielectric interface. J Mod. Optics, 50, 1615-1625 (2003).
. Theoretical comparison of optical traps created by standing wave and single beam. Opt. Commun., 220, 401-412 (2003).
.