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Introduction

The self-organizing by light is based on the confinement of several particles in optical
fields coming from the momentum transfer from the light scattered by the particles
to the objects. If position of one object strongly influences the position of the
others via the scattered light, this kind of inter-particle interaction is called optical
binding.We focus on non-diffracting beams because they keep their lateral profile
unchanged while they propagate. Therefore they are very uniform in the direction
of propagation (up to hundreds of micrometres) and provide very good conditions
for experimental observations of optical binding. At the same time these beams self-
reconstruct behind an obstacle or particle and so the light distribution in the beam
incoming to the other particle has almost its original form. Therefore the particle
interactions based on scattered light are less influenced by the light redistribution
in the incident beam due to the passage through other particles.

Results

Bessel beams provide very good conditions for both theoretical, numerical and ex-
perimental study of binding. From the comparison of theoretical analysis with nu-
merical model based on CDM we can explain behaviour of particles optically bound
in contra—propagating non–interfering Bessel beams. We discovered two main phe-
nomenons connected with binding in Bessel beams named as waves and wavelets of
forces. Origin of both is the interference of incident fields with scattered field which
in the case of the Bessel beams propagate with different phase velocity. Using our
numerical model we found locations of optically bound beads in Bessel beams.
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Coupled Dipole Method

For sizes of particles com-
parable with wavelength
scattering on such objects
is computationally difficult.

The CDM divides the ob-
ject into sufficiently small
parts which can treated as
dipoles.

We used for computation of scattering on many objects cou-
pled dipole method (CDM) to numerically study this phe-
nomenon for two and more objects arbitrarily placed. The
CDM is for such application very useful tool because the ob-
ject is assembled from many induced dipoles and so we are not
restricted to any preferred geometry and number of objects
and their positions. The interaction between each pair of the
objects’ dipoles is considered and so the inter-particle interac-
tions are wholly embedded in the model. Two and more ob-
jects arbitrarily placed in the space can be easily treated.The
CDM computes distribution of dipole polarisations in the ob-
jects and the total field composed from incident and scattered.
From this quantities the forces acting on all dipoles and ob-
jects are computed. We calculate how these forces depend on
the positions of objects and on other parameters.

The setup for binding

Separation of spheres
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In this setup two counter-propagating Bessel beams do not interfere. On their
common optical axis are located two polystyrene beads of size comparable with
wavelength. We vary their separation and calculate the total forces acting on them
by method based on CDM. We get the distribution of dipole polarisations inside the
beads and forces acting on individual dipoles.

Description of Bessel beams
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The easiest way how to obtain Bessel beam is to illuminate axicon by Gaussian
beam. The plane waves behind the axicon propagate with the same angle α0 to
the optical axis. This angle determines the size of the core of the Bessel beam as
is shown in the above formula. The smaller the core the bigger tilt of plane waves
coming from axicon. The propagation of Bessel beams in axial direction is given by
wave vector kz:

kz =

√
k2 − 2.40482

ρ2
0

.

The total force on one bead
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The shape of total force acting on one bead shows wavy character. There are
apparent little wavelets and also one wave with size of the region. The incident
Bessel beams have wavelength 800nm in water and their core radius is 1µm. The
force was computed by CDM.

Explanation of wavelets and waves

A radiates to B

B radiates to A

in the same direction as the incident field

incident beamincident beam

in the oposite direction −> interefernce
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For simplicity we show only one incident beam propagating from the left to the right.
Both beads are sources of scattered field but their effect on the other bead depends
on the direction of propagation. The radiated field from bead A propagates in the
same directions as the incident field. But the radiated field from B to A propagates
in the opposite and therefore interferes with incident field. As the scattered field
propagates with k the incident and scattered field interfere and give rise to waves
and wavelets of resulting forces acting on beads. According to the theoretical model
the wavelength of force wavelets is given by sum k + kz and the wavelength of force
waves by difference k − kz. The wavelengths are therefore:

λwavelets =
λλz

λz + λ
, λwaves =

λλz

λz − λ
, λz = λ

[
1−

(
2.4048λ

2πρ0

)2
]−1/2

.

Amplitudes of spatial spectra components of total force
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From the CDM-computed dependence of forces on beads’ separation we made FFT to get to know the periodicity of forces. The
maximal amplitudes correspond to the dominant spectral components of the force. At the above plots is demonstrated the dependence
of long-wave spectral components on the core size for several sizes of the beads. The positions of maximal amplitudes correspond
with the shown expression for the wavelength of the force waves. The beads size determines if the long-wave spectral components are
dominant over the short-wave (wavelets). The wavelets prevail for smaller beads sizes.
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Detailed view in the short-wave region shows shift of the maximal amplitudes in accordance to the expression for the wavelength of
the wavelets. The beads size modifies the shape of the spectra. The distortion from symmetry in case of radius 260nm corresponds
to the disappearance of wavelets.

The maps of locations of optically bound beads
— regions of stable positions are computed by our model based on CDM

— size of the core greatly changes the locations of the beads through wave-
length of the force waves

— range of locations is given by force wavelets

— size of the beads determines the dominance of the wavelets or the waves

— very short range of locations for the beads with radii of 260nm

— beads with radius < 200nm have very long range of locations given by
dominant wavelets
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