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COMMON CUCKOO
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COMMON CUCKOO

• Mysterious species



COMMON CUCKOO

• How many eggs?

• How often they lay eggs?

• Are they using only one host species or

more?

• Size of breeding area?



USING THE EGG PHENOTYPE

• Within clutch variation is lower than between clutch
variation

• NOTE: Individual female lays the similarly looking eggs
all her life (probably , I think no one tested it yet ;) )



USING THE EGG PHENOTYPE

• HUMAN ASSESSMENT DID NOT WORK 



OUR STUDY

• Human assessment

• Genetic assignment

• Objective egg measurements

• Machine learning



STUDY SYSTEM

• South Moravia – Mutěnice and Hodonín



STUDY SYSTEM

• Host: great reed warbler

• High parasitism rate (75%)



DATASET
203 cuckoo eggs found

192 eggs photographed and measured colour

105 eggs genetically assigned 87 with unknown mothers

(laid by 30 females)
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EGG VARIABLES

• Pattern



EGG VARIABLES

• Shape and size

• From photographs

• Length

• Width

• Volume

• Ellipse deviation



HUMAN ASSESSMENT



AUTOMATIC ASSESSMENT

• Unsupervised hierarchical clustering
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• Supervised learning

• random forest method and leave-one-out validation
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ACCURACY

• Cluster similarity

Human assessment Unsupervised clustering

0.452 0.456



ACCURACY

Supervised learning

• 81% prob of egg assignment to a correct female

• Cluster similarity: 0.61



SAME/DIFFERENT ANALYSIS

• Supervised learning

• random forest method and leave-one-out validation

• DIFFERENT TRAINING METHOD!

1. 1.

2. 2.

…4000x …4000x

SAME FEMALE DIFFERENT FEMALES
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• Testing phase

• Comparing the focal egg with all eggs from the training set
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• Testing phase

• Comparing the focal egg with all eggs from the training set

Fem 1 Fem 2 Fem 3 Fem 4

“Non-reliable“ assignmentx
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SAME/DIFFERENT ANALYSIS

• 40 “reliable“ assignments (65 unreliable)

• 39 of them were assigned correctly

• 97.5% accuracy!

• We used this method for 87 genetically unassigned
eggs

• 25 of them assigned “reliably“ to cuckoo females
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Individual identification is crucial for studying animal ecology and evolution. In birds this is often achieved by 
capturing and tagging. However, these methods are insufficient for identifying individuals/species that are secretive 
or difficult to catch. Here, we employ an automatic analytical approach to predict the identity of bird females based 
on the appearance of their eggs, using the common cuckoo (Cuculus canorus) as a model species. We analysed 192 
cuckoo eggs using digital photography and spectrometry. Cuckoo females were identified from genetic sampling of 
nestlings, allowing us to determine the accuracy of automatic (unsupervised and supervised) and human assignment. 
Finally, we used a novel analytical approach to identify eggs that were not genetically analysed. Our results show 
that individual cuckoo females lay eggs with a relatively constant appearance and that eggs laid by more genetically 
distant females differ more in colour. Unsupervised clustering had similar cluster accuracy to experienced human 
observers, but supervised methods were able to outperform humans. Our novel method reliably assigned a relatively 
high number of eggs without genetic data to their mothers. Therefore, this is a cost-effective and minimally invasive 
method for increasing sample sizes, which may facilitate research on brood parasites and other avian species.

ADDITIONAL KEYWORDS:   brood parasitism – colour – common cuckoo – genotyping – individual assignment 
– machine learning – parental analysis – spotting pattern.

INTRODUCTION

Identification of individuals is important in animal 
ecology and biology research, particularly when 
investigating variation among or within individuals in 
a population. Traditionally, capture–mark–recapture 
techniques have been used to monitor individuals 
during their lifetime (Lindberg, 2012). This method 
has been extended by employing more sophisticated 
methods such as attaching GPS (global positioning 
system) and radio transmitters or RFID (radio 
frequency identification) tags (Krause et al., 2013) that 
allow researchers to investigate the spatial-temporal 
activity of animals in more detail. However, these 

methods still require capturing and tagging, which is 
usually time-consuming, expensive and may reduce 
animal welfare (Weinstein, 2018). Therefore, there 
have been efforts to develop cost-effective indirect 
approaches to identify and monitor individuals within 
a species.

These indirect approaches rely on the fact that 
individuals differ from each other visually and/or 
acoustically and this variation may be used for their 
identification. Indeed, it has been shown that, for 
example, face (Hou et al., 2020) and body pattern data 
(Ferreira et al., 2020) captured from photographs may 
allow discrimination of individuals. Similarly, sounds 
produced by animals also seem to serve as a good 
individual fingerprint (Petrusková et al., 2016; Stowell 
et al., 2019). Recently, applying artificial intelligence *Corresponding author. E-mail: sulc@ivb.cz
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techniques that automate the analysis of various types 
of data, such as pictures or audio recordings, has made 
these methods reliable and applicable for various 
animal taxa (Christin et al., 2019).

However, for many species, identification of all 
individuals in a population is still not straightforward, 
e.g. because it is difficult to catch them or due to their 
secretive behaviour. Here, we focus on one group of 
animals that are especially challenging to study – 
avian brood parasites. There are more than a hundred 
obligate brood parasites that never build their own 
nests and instead lay their eggs into nests of other 
species (Davies, 2010). Brood parasites and their hosts 
have been the focus of considerable research into 
co-evolutionary arms’ races (Soler, 2017), but since 
they only lay eggs and then usually do not return to 
host nests (but see: Šulc et al., 2020), and because egg 
laying is fast (Jelínek et al., 2021), direct observation of 
parasitism in nature is difficult, making identification 
of parasitic females problematic. As a consequence, 
many important aspects of life-history strategy of 
females are still poorly understood (Soler, 2017).

Since it has been demonstrated in several bird species 
(including brood parasites) that individual females lay 
eggs with a relatively constant appearance compared 
to other females (e.g. Øien et al., 1995; Höltje et al., 
2016), there is the potential to use egg appearance to 
identify individual females. This method has already 
been applied for the identification of parasitic eggs in 
conspecific brood parasites (e.g. Lyon, 2003). However, 
later studies that estimated accuracy of parasitic egg 
identification showed ambiguous results for some 
species and for others this method did not work at 
all (reviewed in: Petrželková et al., 2017). One of the 
reasons why many studies found low accuracy of 
identification might be that closely related females 
lay similar eggs. Indeed, it has been shown that egg 
appearance, namely egg colour (Morales et al., 2010), 
spotting pattern (Gosler et al., 2000) and egg size 
(Christians, 2002) are highly heritable traits that 
might complicate female identification, especially in 
inbred populations. Another explanation might be 
that previous studies did not use the most informative 
measures of egg variability.

In this study, we focused on eggs of the common 
cuckoo (Cuculus canorus Linnaeus, 1758, hereafter 
cuckoo), because we still have little information about 
the breeding biology and evolution of individual host-
specific races (Gibbs et al., 2000; Fossøy et al., 2011) 
in this brood parasite. Moreover, there has been a 
recent population decline (Hewson et al., 2016), and 
a low-cost and minimally invasive method of female 
identification would greatly facilitate conservation 
of this enigmatic species. Using egg appearance to 
identify cuckoo females has already been attempted, 

but was unsuccessful (Moksnes et al., 2008). However, 
that study assessed cuckoo eggs from a human 
perspective, with people sorting the eggs based on 
photographs. To date, there have been no attempts 
to use more objective quantification methods for egg 
classification in the cuckoo. These objective methods, 
such as spectrophotometry for measuring colours 
(including the ultraviolet part of the spectrum) 
and image analysis of photographs for quantifying 
spotting pattern, size and shape of eggs, are now 
available and may allow more accurate classification 
that can be carried out in an automated manner 
(Gómez et al., 2021).

Here, we employ a detailed egg examination and 
novel analytical approach to analyse a wide range of 
phenotypic features of cuckoo eggs to predict maternal 
identity. We also performed human assessment based 
on photograph sorting to compare the reliability 
of both methods with the true identity acquired 
from molecular analyses. Finally, since it has been 
suggested that similar-looking eggs laid by different 
females may belong to closely related individuals, e.g. 
mother and daughter (Moksnes et al., 2008), we will, 
for the first time, investigate the relationship between 
the genetic distance of individual cuckoo females and 
the phenotypic distance of their eggs.

MATERIAL AND METHODS

Study system and data collection

All data were collected in the fishpond area between 
Mutěnice (48°54′N, 17°02′E) and Hodonín (48°51′N, 
17°07′E) in South Moravia, Czech Republic from May 
to July 2016 and 2017. Here we searched for, and 
regularly checked, the great reed warbler [Acrocephalus 
arundinaceus (Linnaeus, 1758), hereafter GRW] and 
Eurasian reed warbler [Acrocephalus scirpaceus 
(Hermann, 1804), hereafter RW] nests, two common 
hosts of the cuckoo. Most GRW nests were found 
during the building stage. The rest of the GRW and all 
RW nests were found in different stages of breeding 
by systematic searching. If possible, all GRW nests 
were checked every day from the nest-building stage 
until clutch completion and approximately every third 
day during incubation. All RW nests were checked 
approximately every second day during the laying 
stage and extensively during incubation.

When a cuckoo egg was found in a host nest, we 
immediately measured its colour and took a photo (see 
below) to avoid colour change during the incubation 
period (Hanley et al., 2016). When the eggshell was 
dirtied (e.g. by faeces or vegetation), we cleaned it 
with a wet cloth before measuring and photographing. 
In the cases of multiple parasitized nests, we removed 
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the newly laid cuckoo egg(s), transferred them to 
an incubator (HEKA-Kongo; HEKA-Brutgeräte, 
Rietberg, Germany) and incubated them artificially 
to prevent sample losses caused by the cuckoo 
nestlings (Honza et al., 2007). The removed cuckoo 
eggs were either incubated until hatching and chicks 
placed into non-parasitized host nests (for other 
experiments) or we froze the eggs before hatching 
for the future genetic analysis (see ‘Genotyping and 
kinship analysis’ section). We took a blood sample 
from all ten-day old cuckoo nestlings from their 
ulnar or medial tarsometatarsal vein (approx. 25 µL). 
Finally, we mist-netted 36 and 17 adult cuckoo males 
and females, respectively, and collected their blood 
samples from the ulnar vein (approx. 25 µL). All 
blood samples were stored in 96% ethanol until later 
genetic analysis.

We performed genealogical analysis based on 
samples collected in 2016 and 2017 (GenBank project 
accession No. PRJNA733884). However, here we 
only analysed the appearance of cuckoo eggs laid in 
2017 because we were able to take higher quality 
photographs in 2017. In 2017, we found 203 cuckoo 
eggs in total (121 and 82 in the GRW and RW nests, 
respectively). We photographed and measured the 
colour of 192 of them. Among these photographed 
cuckoo eggs, genetic samples were collected from 109 
nestlings or embryos.

Measurements of egg appearance

To obtain background colour we measured reflectance 
using JAZ Spectrometer (Ocean Optics, Dunedin, 
FL, USA) in the range 300–700 nm. We took nine 
measurements (each covering approximately 1 mm2) 
at three different parts of the egg (sharp pole, middle 
part and blunt pole). Since we focused on background 
colour, we avoided measuring dark spots. For each egg, 
we used the measurement with the highest reflectance 
that best corresponded to the colour of the background 
(Šulc et al., 2019).

Spotting pattern was calculated from digital images 
taken by a Canon EOS 700D with prime Canon EF 
40 mm lens. All photos were taken in RAW format 
under diffuse sunlight conditions, at the same angle 
and from the same distance and were referred to a 
grey standard (X-Rite Colour Checker Grey Scale 
Chart) with known reflectance. Exposure settings 
were adjusted accordingly with lighting conditions, 
yet the ISO value was set constant at 200 and aperture 
f/8. Image calibration, pattern analysis, analysis of 
shape and measurements of size were performed in 
ImageJ software (Schneider et al., 2012) using the 
Multispectral Image Calibration and Analysis (MICA) 
Toolbox (Van den Berg et al., 2020). A scale bar was 
included in each photo, meaning that all images were 

equally rescaled to the scale of the smallest image 
(30 pixels/mm). For pattern investigation we applied 
a granularity analysis approach (Van den Berg et al., 
2020) that creates a bandpass ‘energy’ spectrum across 
a range of spatial frequencies. The pattern energy at 
each frequency band was measured as the standard 
deviation of the filtered image (for details, see: Šulc 
et al., 2019; Van den Berg et al., 2020). Since pattern 
energy cannot distinguish between dark spots on 
light background and light spots on dark background, 
we also calculated the ‘skew’ of the pattern, which 
quantifies the asymmetry of the pattern luminance 
distribution. A negative value of skew implies there 
are more spots than background colour, while a 
positive skew implies there is more background 
colour than spots. Skew was also measured at each 
granularity band. Since the calculation of the skew is 
not implemented in the MICA Toolbox, we provide the 
code in the Supporting Information (Appendix S1). 
All colour measurements and photos were taken by 
a single person (M.Š.) to ensure high consistency of 
the data.

Genotyping and kinship analysis

The genealogical analysis was performed on DNA 
samples isolated from the blood of adults (36 males 
and 17 females) and nestlings (N = 165) or embryonic 
tissues (N = 47) using a Tissue Genomic DNA mini 
kit (Geneaid Biotech Ltd, New Taipei, Taiwan) and 
following the manufacturer’s protocol. We estimated 
kinship relationships from nuclear single-nucleotide 
polymophisms (SNPs) and mitochondrial DNA 
haplotypes enabling us to exclude highly implausible 
maternal (or maternal–sibling) relationships in 
the inferred genealogy. Kinship relationships were 
estimated using Colony (Jones & Wang, 2010) based 
on > 1000 nuclear SNPs. The input data file that went 
into the pedigree analysis in Colony can be found in the 
Supporting Information (Appendix S2).

To acquire the SNP dataset, we genotyped all 
samples with the ddRAD (double digest restriction-
site associated DNA) technique (Peterson et al., 2012) 
following the protocol of (Piálek et al., 2019). Two 
prepared libraries were sequenced on an Illumina 
HiSeq4000 system (two lanes, 150 cycles P/E) in the 
EMBL Genomic Core Facility, Heidelberg, Germany. 
The obtained RAD-tags were processed in STACKS 
v.2.4 (Rochette et  al., 2019) and mapped on the 
Cuculus canorus genome GCA000709325.1 (https://
www.ncbi.nlm.nih.gov) with Bowtie2 assembler 
v.2.2.4 (Langmead & Salzberg, 2012). Only loci with 
95% or higher presence of individuals were scored 
and further filtered based on Hardy–Weinberg 
equilibrium, linkage disequilibrium and minimum 
minor allele frequency (0.4) in PLINK v.1.9 (Purcell 
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et al., 2007), which resulted in a dataset with 1620 
markers.

For the mitochondrial  haplotype analysis, 
we sequenced a 411-bp portion of the left-hand 
hypervariable control region (Gibbs et  al., 2000; 
Fossøy et al., 2011, 2012). Mitochondrial sequence 
data were assembled and manually checked in 
GENEIOUS v.10.2.6 (Kearse et  al., 2012) and 
haplotypes were estimated based on a distance matrix 
with up to 1% tolerance (approx. four mutations) for 
genotyping errors.

Kinship analysis assigned the offspring (N = 109) to 
31 clusters containing 1–12 eggs each. Since human 
errors might have created incorrect genetic assignments 
(e.g. due to confusion of samples), all assigned cuckoo 
eggs were checked against four additional criteria: 
(1) laying date – cuckoo females cannot lay eggs 
more often that every second day (Wyllie, 1981), (2) 
host species – cuckoos preferentially parasitize a 
single host (Nakamura et al., 2005), (3) laying area – 
cuckoos lay their eggs in a spatially restricted laying 
area (Nakamura et al., 2005) and (4) visual check of 
cuckoo egg appearance – individual cuckoo females 
lay eggs with a constant egg appearance (Moksnes 
et al., 2008). Four eggs violated two of these criteria 
and we suspected them to be assigned incorrectly 
(for details, see Fig. S8 in Supporting Information, 
Appendix S3). Therefore, we excluded them from the 
dataset of genetically assigned eggs (final N = 105) 
and included them into the dataset of photographed 
eggs without genetic samples (unlabelled dataset, 
final N = 87). For all subsequent analyses dealing with 
egg phenotype (see below), except the same–different 
analysis, we removed females to which only one egg 
has been genetically assigned (N = 10), meaning that 
we used a final dataset of 95 eggs laid by 20 females 
(labelled dataset). Singleton females were removed 
as supervised random forest learning cannot be done 
without at least two eggs per female, and thus we kept 
the sample size the same across the other clustering 
methods to enable comparability.

Human assessment

We printed 95 photographs of cuckoo eggs that were 
standardized in their colour and size (Figs S1–S5 in 
Supporting Information, Appendix S3) using the MICA 
Toolbox (Van den Berg et al., 2020). We then asked 12 
people to sort these photographs and create groups of 
pictures representing individual females according to 
similarity in egg appearance. First, we asked them to 
sort these pictures into an unknown number of groups 
and, second, we asked them to sort these pictures into 
20 groups corresponding to the real number of females 
identified by genetic assessment. For the assessments, 
we asked: (1) five people with no experience with egg 

appearance from wild animals, (2) three students of 
avian ecology who had experience with egg appearance 
from wild birds but not cuckoo eggs and (3) four people 
(co-authors of this manuscript) that had years of 
experience with cuckoo eggs. All participants received 
no other information about the eggs. Cluster similarity 
between the human assessments compared to the real 
data was determined using the adjusted Rand index, 
which provides a corrected-for-chance measure of the 
similarity between two data clusterings, implemented 
using the ‘cluster_similarity’ function from the R 
package clustereval (Ramey, 2012).

Automatic assessment

We developed an automatic method based on the 
similarities/differences of cuckoo egg phenotypes. In the 
first step, we collected colour, pattern and dimension data 
from calibrated photographs and spectrophotometry 
data for all cuckoo eggs. Initially, we conducted a 
principal component analysis (PCA) on different aspects 
of the egg photographs in order to avoid the use of 
correlated variables in the models. Principal component 
analysis (PCA) components used in the final dataset 
were selected based on scree plot inspection.

Spectral data: Principal component analysis (PCA) was 
carried out using binned, scaled spectral data created in 
the R package pavo (Maia et al., 2019), and two spectral 
PCA components were used in the final dataset. We 
also used two other spectral measures extracted from 
pavo: the mean brightness (B2 variable; mean relative 
reflectance over the entire spectral range) and the 
position of the ultraviolet peak (UV variable; defined 
as a wavelength within the range of 300–360 nm where 
reflectance reached the highest point).

Shape data: The variables entered into the PCA were 
length, maximum width, volume, ellipse deviation and 
surface area (Troscianko, 2014). Three shape PCA 
components were selected for inclusion into the final 
dataset.

Pattern data: The variables entered into the PCA were 
12 pattern energies measured at a range of scales 
(from 1 to 0.0221 in steps of 1/square root of 2) across 
the whole egg (Van den Berg et al., 2020), and 12 
pattern energy skew values measured at the same 
range of scales across the whole egg. We also included 
a measure of total pattern energy across the whole egg. 
Finally, we divided up each egg into three segments and 
measured the total pattern energy in each segment, 
as well as the standard deviation between segments, 
to get a measure of how variable the patterning was 
across the egg. Three pattern PCA components were 
selected for inclusion into the final dataset.
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Luminance data: We analysed luminance from 
photographs, including both the spots and background 
areas of the eggs. We divided the egg up into three 
segments and took the average luminance and the 
standard deviation of luminance across each segment, 
as well as the standard deviation of luminance across 
all three segments. One luminance PCA component 
was selected for inclusion into the final dataset.

In total, the final dataset contained 11 egg phenotypic 
traits that were used for clustering analysis.

Within- and between-female variability in egg 
appearance

To create a metric of within-female variance, we calculated 
the standard deviation for each phenotypic trait within 
one female, and then took a mean value across all traits, 
giving an average variability value for each female.

To create a metric of between-female variance, we 
calculated the average value of each phenotypic trait 
(N = 11) for each female (i.e. created an ‘average’ egg) 
and then calculated the standard deviation for each 
phenotypic trait across all females. We then averaged 
these standard deviations to create a measure of between-
female variability across all traits. All trait values were 
scaled to ensure comparability across different traits.

To test whether within-female variance is lower 
than between-female variance, we conducted a one-
sample t-test where the within-female variance metric 
(N = 20) is compared with the test value (the between-
female variance value).

We also quantified individuality using Beecher’s 
information statistic, which can enable comparison 
across different studies of individual identity signals 
(Linhart et al., 2019), using the R package IDmeasurer. 
We compared the real data with a control statistic 
where the ID labels were shuffled.

Unsupervised learning

First, we carried out hierarchical clustering to attempt 
to cluster the eggs via visual similarity without any 
training or further information (e.g. number of females 
present). All variables were scaled for this analysis. To 
assess the accuracy of this method, we specified the 
real number of groups (20) and assessed the cluster 
similarity between the predictions of the hierarchical 
model for these groups compared to the real data using 
the adjusted Rand index, as before.

Supervised learning

Female clustering: We used a random forest model 
with a ‘leave-one-out’ cross-validation approach (Stone, 
1974). For each egg in the dataset, the model was 
trained using a dataset consisting of all other eggs, and 

then tested using the focal egg. The model attempted 
to classify each egg to a given female, and the accuracy 
of the model was assessed using the classification 
accuracy value, and through cluster similarity values, 
as before (taking the average of 1000 runs, as random 
forest modelling is a stochastic process). We also fitted 
a random forest model to the full dataset to allow us to 
assess the importance of the different variables included 
in the model (using the mean decrease in accuracy).

Same/different analysis: We used an approach where 
a random forest model was trained to label pairs of 
eggs as ‘same’ or ‘different’. The training set used 
4000 ‘same’ rows, where the two eggs were from the 
same female and 4000 ‘different’ rows, where the two 
eggs were from different females.

As above, we used a ‘leave-one-out’ cross-validation 
approach. For each egg in the dataset, the model 
was trained using a same/different training dataset 
generated from all other eggs. In the test phase, we 
compared the target egg on all other eggs. We calculated 
whether the target egg was successfully labelled (i.e. 
it was consistently matched to eggs from the same 
female) or whether it was erroneously labelled (i.e. it 
was consistently matched to eggs from another female). 
The entire process (i.e. the training and testing process 
on the full dataset) was repeated 100 times to allow us 
to calculate a reliability metric, i.e. what percentage of 
the matches made were true-positives.

For the unlabelled dataset, we ran the training 
component as above. For the testing phase, we tested 
each of the unlabelled eggs on all the other eggs, 
calculating how many times in each of 100 runs the 
target egg was matched with a cluster of eggs that were 
from the same female. If the percentage was greater 
than 95%, we considered this egg as a candidate for 
being from this female. To corroborate this conclusion, 
we used non-phenotypic data: laying dates, laying 
locality and host species.

Phenotype–genotype similarity

Nine of the 30 labelled females were caught, and they 
were genotyped via blood sampling, as described above. 
Thus, we were able to calculate genetic similarities 
among these females (Supporting Information, 
Appendix S4) which was done in GENEIOUS 10.2.6 
(https://www.geneious.com). To compare the genetic 
similarities between these females with phenotype 
similarities of their eggs, we created a trait–distance 
matrix by taking means of the phenotypic parameters 
from their egg data, and then using Euclidean distance 
as the distance metric. We compared the genetic 
distance matrix with the trait distance matrix using a 
Mantel test, a statistical test of the correlation between 
two matrices, implemented in the vegan package in R 
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using the Kendall method (as this is most appropriate 
for a small dataset). We also split the phenotype 
data into different components (spectral, pattern 
and shape) and calculated the phenotype–genotype 
similarities for each of these components separately, to 
test whether different aspects of the egg phenotype are 
differentially correlated with the female genotypes.

All code used for measuring egg appearance and 
carrying out analyses performed in R (R Development 
Core Team, 2018) is provided in the Supporting 
Information (Appendix S5).

RESULTS

Within- and between-female variability in egg 
appearance

Some females laid eggs with low variability in 
their appearance (e.g. female 13 – within-female 
variance = 0.33; Fig. S2 in Supporting Information, 

Appendix S3) and others, on the contrary, had relatively 
high variability (e.g. female 29  – within-female 
variance = 1.31; Fig. S4 in Supporting Information, 
Appendix S3). The mean within-female variance was 
0.85 (SD = 0.30). Overall, between-female variance 
(mean of trait standard deviations = 1.83, N = 11 traits; 
SD = 1.02) was higher than within-female variance (one 
sample t-test, t = 14.87, d.f. = 19, P < 0.001). Beecher’s 
information statistic Hs  =  1.97 for this dataset, 
considering only significant variables. (This compares 
to a control Hs  =  0.56, where the ID labels were 
randomly shuffled). Variability in the egg appearance is 
also visible in Figure 1 where the two most informative 
variables in the random forest analysis (PC2 for pattern 
and PC2 for spectral data) are plotted.

Human assessment

Participants with some experience of working with bird 
eggs performed better at the grouping task than those 
with no experience, although there is no clear evidence 

Figure 1.  Values for individual eggs on the two most important PC variables (according to the random forest model), 
grouped by cuckoo female ID based on the genetic assignment. PCA2 pattern variable indicates egg skew and PC2 spectra 
variable indicates blueness/greenness of eggs (for details, see Table 2).
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that specific experience of working with cuckoo eggs is 
beneficial (Table 1; for all results of individual people, 
see Supporting Information, Appendix S4).

Unsupervised learning

Clustering using unsupervised hierarchical learning 
gave a cluster similarity value of 0.452; similar to 
that of experienced human observers, but better than 
inexperienced observers (Table 1).

Supervised learning (random forest analysis)

Female clustering
Clustering using supervised random forest analysis 
(with a leave-one-out protocol) led to good classification, 
with a mean of 77.08/95 (81.1%) of eggs correctly 
assigned to their genetic parent. The cluster similarity 
had a mean of 0.61 (SD = 0.03), higher than both 
experienced human assessment and unsupervised 
learning.

We assessed variable importance (Table 2) using 
a full model including all data. PC2 for pattern was 
the most important variable for classification, and the 
variables loading onto this PC were predominantly 
those for the ‘skew’ of the pattern. PC2 for spectra was 
also important, with this variable being influenced by 
the ‘blueness/greenness’ of the egg.

Same/different analysis
Forty labelled eggs (out of 105) passed the reliability 
criterion, being assigned to a unique female on 95% or 
more of the 100 runs. 39 of these (97.5%) were assigned 
to the correct female. Only one was consistently 
erroneously assigned to the incorrect female. In this 
case, an egg from female 29 (e92) was matched with 
eggs from female 23.

Out of 87 unlabelled eggs, the model was able to 
reliably (on 95% of runs) identify 25 as belonging to a 
labelled female (eight eggs assigned to female 5, five 
eggs to female 27, three eggs to female 13, two eggs to 
female 29, 21 and 23, and one egg to each of females 4, 
28 and 30). For visual comparison, see Figures S1–S5 
in the Supporting Information (Appendix S3).

Phenotype–genotype similarity
The average genetic similarity between 36 pairs of 
nine cuckoo females was 99.38% (± 0.03 SD). The most 
genetically similar were females 23 and 24 (genetic 
similarity = 99.50%), where female 23 was the mother 
and female 24 her daughter. There was no significant 
relationship between female genetic distance and their 
overall egg phenotype distance (Mantel test r = 0.1968, 
P = 0.10; Fig. 2).

When considering each aspect of phenotype distance 
separately, both pattern/luminance and shape distance 
metrics did not correlate with genetic distance (r = 0.03, 
P = 0.39 and r = –0.23, P = 0.93 respectively; Fig. 3). 
However, spectral distance did correlate with genetic 
distance (r = 0.36, P = 0.04; Fig. 3).

DISCUSSION

The results of our study support the ‘constant egg-type 
hypothesis’ predicting that individual cuckoo females 
lay eggs with a constant appearance (Moksnes et al., 
2008). This is apparent from the photos of cuckoo eggs 
(Figs S1–S5 in Supporting Information, Appendix 
S3) and supported by the fact that the within-clutch 
variation of cuckoo eggs is significantly lower than 
between-clutch variation. This has also been observed 
in other bird species and several adaptive explanations 
have been proposed for this phenomenon (reviewed in: 
Gómez et al., 2021), such as easier recognition of the 
parasitic egg by hosts (Øien et al., 1995), recognition 
of an individual’s own clutch in colonially-breeding 
birds (Hauber et al., 2019) or signalling female quality 
(Moreno & Osorno, 2003). Therefore, there is the 
potential to use egg appearance to identify individual 
bird females and our study shows that automatic 
analyses may be a more accurate method than human 
assessments.

The unsupervised hierarchical clustering method 
showed similar results to experienced human 
classifiers, while supervised random forest analysis 
showed considerably better results: 81% of cuckoo eggs 
were assigned correctly. This suggests that, in some 
cases, automatic egg assignment to females should 
be used rather than human assessment. Detailed 
consideration of the clusters created by humans and the 
automatic methods showed that the same females were 

Table 1.  Cluster similarities of egg sorting performed 
by humans both without knowledge (when they did not 
know the number of females) and with a known number of 
females

Group No knowledge Known 
number  
of females

No experience (N = 5) 0.225 (0.066) 0.241 (0.041)
Non-specific experience 

(N = 3)
0.502 (0.170) 0.496 (0.057)

Specific experience (N = 4) 0.417 (0.050) 0.456 (0.158)

Mean cluster similarity (and SD in brackets) is presented for each 
category.
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problematic for both clustering methods (all sorting 
results can be found in the Supporting Information, 
Appendix S4), probably reflecting phenotypic overlap 
between some individuals (Fig. 1). Our results show 
that one of the pattern characteristics (skew), blueness 
of colour and finally egg size were the most important 
parameters for improving clustering accuracy. The 
slight improvement in clustering accuracy for the 
automatic methods over human assessment may 
reflect the use of features that humans are not able to 
see (e.g. the reflected ultraviolet radiation).

The greatest benefit of the methods we present 
is the possibility to reliably assign unlabelled eggs 
to individual females. Same-different analysis that 
uses both genetic and phenotypic information of the 

labelled dataset show 97.5% (39 of 40 cases) accuracy 
of egg assignment. Moreover, the one wrongly assigned 
egg (although looking similar to the other eggs of the 
assigned female) would be the only one posteriori 
suspected to be an incorrect assignment, because it was 
laid into the nest of another host species, in another 
locality and on the same day as another egg laid by the 
same female (Supporting Information, Appendix S4).

Using this method, we were able to assign 25 eggs 
(out of 87) to nine known females. The reliability is 
supported by the fact that all these 25 eggs meet all 
additional criteria and their appearance, host species 
and locality where they were laid and laying date 
perfectly matches with other eggs laid by the assigned 
cuckoo females (Supporting Information, Appendix S4).  

Figure 2.  Phenotypic distances of nine average eggs laid by nine genotyped common cuckoo females (A) and their genetic 
distances (B). Thicker green lines denote higher phenotypic and genetic similarity. Correlation between phenotypic and 
genetic distances (C).

Table 2.  The importance of individual variables in egg clustering using random forest analysis

Variable Mean decrease in accuracy Main PCA loadings

PC2_pattern 28.42 Skew values at pattern energy scales 1, 0.707, 0.5, 0.3536, 0.25, 
0.1768, 0.125, 0.08839, 0.0625, 0.04419

PC2_spectra 26.80 426, 447, 468, 489, 510, 531nm
PC3_shape 23.81 Length, max width
PC1_shape 21.37 Length, max width, volume, surface area
PC1_spectra 19.79 342, 552, 573, 594, 636, 678, 699nm
UV_shape 19.36 -
PC2_shape 16.91 Ellipse deviation
PC1_luminance 15.42 Luminance sections 1, 2 and 3, standard deviation sections 1, 2 

and 3
PC3_pattern 15.18 Pattern energy scales 1, 0.7071, 0.5, 0.3536, 0.04419, 0.03125, 

0.0221
Brightness 12.90 -
PC1_pattern 11.23 Pattern energy scales 0.3536, 0.25, 0.1768, 0.125, 0.08839, 

0.0625, total pattern energy, total pattern energy in segment 2

Variables with larger mean decrease in accuracy are more important for classifying the data (mean decrease in accuracy is a measure of how much 
the accuracy of the random forest decreases due to the exclusion/permutation of a single variable). The main PCA loadings are those that were greater 
than +/– 0.25.
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Our method seems to work well, especially for 
females that laid distinctive eggs. Therefore, we may 
expect better results of the method in species where 
between-clutch variation substantially exceeds the 
within-clutch variation. It must also be noted that 
the accuracy of the assignment will increase with the 
relative number of (genetically and phenotypically) 
analysed samples in the study area that are used 
for the training dataset, because broad sampling 
will reduce the chance that an unsampled egg that 
has been laid by a completely new female will be 
assigned to an existing (incorrect) female. Finally, we 
recommend applying other available information (e.g. 
laying date and laying area) to eliminate potential 
incorrect assignments.

A previous study suggested that closely related cuckoo 
females may lay eggs that are indistinguishable from 
each other (Moksnes et al., 2008). Our results partially 
agree because humans (even experienced ones) and 
the unsupervised automatic clustering method failed 
to distinguish eggs of three most closely related 
pairs of cuckoo females (females 23 vs. 24 – mother 
and daughter, 23 vs. 28 and 22 vs .26, respectively: 
Supporting Information, Appendix S3). Moreover, 
detailed comparison between genetic distances of nine 
laying females and phenotypic distances of their eggs 
showed the background colour of eggs was more similar 
between more related females. However, genetic 

distances between females did not correlate with 
pattern and shape distances of their eggs. Therefore, 
although it has been shown that all investigated egg 
features – colour, spotting pattern and also size – have 
high heritability (Gosler et al., 2000; Christians, 2002; 
Morales et al., 2010), our results indicate that the 
background colour of cuckoo eggs might be the most 
heritable. This also supports the idea that egg colour 
seems to be vital for egg recognition in brood parasitic 
systems (Spottiswoode & Stevens, 2010; Honza et al., 
2014). However, since several studies reported that 
hosts use spotting pattern (De la Colina et al., 2012) 
or egg size (Marchetti, 2000) when recognizing and 
eliminating parasitic eggs, we still expect relatively 
high heritability of these egg traits in brood parasites. 
We suspect that the insignificant relationship between 
genetic distance and phenotypic distance in spotting 
pattern and size reflects our limited sample size. 
A larger sample size, including more mother–daughter 
pairs, is needed to truly estimate heritability values of 
individual egg traits (de Villemereuil et al., 2013). The 
lack of significant correlation between egg shape and 
genetic similarity may also be explained by the fact 
that egg size often reflects the size of laying females 
(Larsson & Forslund, 1992), which depends on the 
genetic contribution of both parents and, therefore, 
might differ more even in closely related females. 
Moreover, cuckoos are raised by host parents that vary 

Figure 3.  Correlation between spectral (A), pattern/luminance (B) and shape (C) distances, respectively and genetic 
distances. Individual phenotypic distances of average eggs laid by nine genotyped common cuckoo females: spectral (D), 
pattern/luminance (E) and shape (F) distances.
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in their provisioning care (Požgayová et al., 2018), 
which may also influence the body size of cuckoo 
females in adulthood. Finally, there is a positive 
relationship between food availability and egg size 
(reviewed in: Christians, 2002). Consequently, since 
egg size and shape may differ even in closely related 
females, these traits may be useful for identification. 
Indeed, some human participants (and also supervised 
clustering analysis) distinguished eggs of the three 
closely related females correctly, presumably because 
of differences in size and shape (see Supporting 
Information, Appendix S4).

CONCLUSION

We conclude that, although individual cuckoo females 
laid eggs with constant appearance, egg phenotype alone 
cannot be used to identify individual cuckoo females. 
This might be caused by the fact that closely related 
females lay eggs similar to each other. However, here we 
present a novel supervised method that substantially 
increased our sample size, which consequently helped 
us to precisely estimate laying areas of cuckoo females 
(Koleček et al., 2021). In future, we plan to use this 
method to reveal more about the ecology and evolution 
of cuckoos, e.g. to investigate the number of eggs laid 
by individual females or host selection. We encourage 
researchers investigating inter- and intraspecific brood 
parasitism to use this low-cost and ethically more 
appropriate method of individual identification. As it 
seems that the phenomenon of higher between-female 
variation and lower within-female variation in egg 
appearance is common in birds, identification of laying 
females using our method has the potential to be of 
widespread use, both for brood parasitic species and also 
for other species where, for example, females are difficult 
to catch.
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Appendix S2. Data used for pedigree analysis in Colony software.
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