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Chromosome Segmentation and Classification
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Karyotyping

® Technique used for analyzing chromosomal structures
= Chromosomes are separated, organized and inspected for any abnormalities

® Abnormalities may lead to diagnosing specific birth defects, genetic disorders

or cancer
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Challenges of chromosome segmentation T |FEEC

® | aborious and time-consuming
® Demands high level of expertise E_

= Qverlapping chromosomes

_ S5
® Touching chromosomes &
—
= Bent chromosomes 7

® Non-chromosomal objects
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Segmentation pipeline

Image denoising

Chromosome location and cluster identification

® |nstance segmentation with Mask R-CNN

Test-Time Augmentation
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Image denoising

= U-Net architecture to get rid of nucleus cells and dust particles

® Trained and tested on Biolmlab dataset from University of Padova
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Chromosome location and cluster identification T |[FEEC

® Binary mask obtained with Otsu's thresholding
= Detection and extraction of chromosomes with OpenCV bounding boxes

= Sorting of single and overlapping/touching chromosomes
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Instance segmentation

® (Clinical dataset from Guangdong Women and Children's Hospital
= Mask R-CNN architecture with ResNet50 as backbone

= Flipping augmentation during training
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Test-time augmentation T |[FEEC

Increases output precision of segmented masks

Input image is flipped by 90°, 180°, and 270° and segmented

Predicted masks are matched by choosing mot probable fit with loU over 0.5

Output masks are product of averaging the matched augmented masks
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Examples of segmented chromosomes T |FEEC
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Fig. 1: Correct segmentation Fig. 2: Incorrect segmentation
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Model Ensembling for Chromosome Classification

= |Improves classification results by
pooling multiple models together

® Based on assumption that different, l
good models can extract different
featu res [ Xception ] [Mobilenet] [Efficientnet] [ ResNet ]

= Used models - Xception,
MobilenetV?2, EfficientnetB2,
ResNet18

w 1 W2 W3 W4

Prediction
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Single model vs. Model ensembling

Model Dataset Accuracy Dataset Accuracy
Xception 91.92 % 96.56 %
MobilenetV2 83.46 % 90.14 %
EfficientnetB2 Biolmlab 9229 %  CIR 95.41 %
ResNet18 84.45 % 94.50 %

Model Ensemble 94.78 % 97.48 %
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Examples of misclassifications T |FEEC|

Pred: 2 True: 8 Pred: 18 True: 8 Pred: 17 True: 8 Pred: 8 True: 11 Pred: 8 True: 14 Pred: 2 True: 3
Pred: 12 True: 5 Pred: 19 True: 22 Pred: 19 True: 22 Pred: 18 True: 16 Pred: 22 True: 21 Pred: 21  True: 19

Bioimlab dataset CIR dataset
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Siamese network

= Can compare similarity between two images

® Top-3 accuracy ~98 % for both datasets

® |ncorrectly paired chromosomes are checked and rearranged based on the
similarity of the pairs
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Thank you for your attention!
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