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How did neurosciences discoveries formed modern Al techniques?
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Brief recapitulation from yesterday
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Traditional Methods Deep learning algorithm emerges

Deep learning hype emerged from
Imagenet competition in 2012.

‘ AlexNet ‘

GoogleNet DenceNet

[ ConvNet ‘ VGG Channel
T‘ Boosted CNN

O C _ HC O

ResNet EfficientNet

Inception ResNeXt
V2V3V4




Deep Neural Network
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Outline

Brief Origins of computing
o  Turing Machine
o  Von Neumann architecture

How did neuroscience experiments in
1950 - 1970 pioneered the idea of
neural networks?

How are CNNSs similar to the brain visual
cortex?

Biology inspired computing
o  Spiking Neural Networks
o  Neuromorphic chips
o  Liquid time constant neural
networks

Future directions of Al



Origins of computing

In 1936, at Cambridge University, Alan Turing |
invented the principle of the modern computer o nan @8
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In 1945, The von Neumann machine was created by = : ;
its namesake, John von Neumann, a physicist and — = A e | Central Processing Unit

mathematician, building on the work of Alan Turing x = 3 ij\ ; !
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How can we further improve the computer architecture?



How can we further improve the computer architecture?

Look deep into nature, and then you will understand everything better.

Albert Einstein



How can we further improve the computer architecture?

Look deep into nature, and then you will understand everything better.

Albert Einstein

Neuroscience is by far the most exciting branch of science because the brain is the
most fascinating object in the universe.

Stanley B. Prusiner

WE HAVEA PLAN
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How did the evolution form the best “computer” in the universe?

ANATOMY OF THE BRAIN
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Human brain is too complex to study as a whole, let’s start
with basic units i.e. Neurons

e the soma of a neuron can vary from
4 t0 100 ym in diameter
e axon diameter ~0.1-10 ym

The average brain weight of the adult is about 1.2 Kg
Energy consumptions approx. 15 Watts
maximal firing rate of single neuron max 300-400 Hz

Modern CPUs use 150 Watts, GPUs 250 Watts
clock speed is in GHz
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Neurosciences Discoveries that led to modern Al techniques

Alan Hodgkin and Andrew Huxley described the model in 1952 to explain the ionic mechanisms underlying the initiation and
propagation of action potentials in the squid giant axon. They received the 1963 Nobel Prize in Physiology or Medicine for this

work.

Squid giant axon,
cut and ligated

(a) Electrode outside membrane
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ANIMAL PHYSIOLOGY 3L Figure 12,7 (Part 1)
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Squid axon might be as large as Tmm in diameter
(approx. 100x bigger in comparison with humans)
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System of nonlinear differential equations
Too difficult to solve, complex networks with multiple

neurons
Not very useful in state of the art Al, BUT .....



Neurosciences Discoveries that led to modern Al techniques:
PERCEPTRON

e Perceptron, Rosenblatt 1957 Inputs

e Can we model neuron behaviour without
differential equations? => let’s build something
simple i.e. PERCEPTRON

Dendrites Qutput

/ Linear Activation
@ function function

] = 1 if w-x+b>0,
0 otherwise

Nucleus

Voltage (mV)

Action potentials in the brain are “basically forming binary code”
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|ldea of using spatial filters (convolutions) in CNNs

° 1960’s and 1970's Dr. Hubel and Dr. Wiesel
Primary visual cortex is responding to basic shapes (e.g. oriented lines). This led to the idea of using spatial filters for detecting specific
image features.
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Visual pathway inspired architecture of CNNs

e V1 Neurons detect basic shapes i.e. oriented lines

e Visual neurons in the inferior temporal cortex fire selectively to hands and faces and other complex shapes

Posterior parietal cortex

Dorsal (“where”)
pathway) v (vs)




Origins of CNNs

1980
Neocognitron: A Self-organizing Neural Network Model Uy

for a Mechanism of Pattern Recognition

shared connections
= spatial filtering
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LeNet is a convolutional neural
network structure proposed by
Yann LeCun et al.
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Full connection
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Human brain vs CNN architecture
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Kuzovkin, I., Vicente, R., Petton, M. et al. Activations of deep convolutional neural networks are aligned with gamma
band activity of human visual cortex. Commun Biol 1, 107 (2018). https://doi.org/10.1038/s42003-018-0110-y



https://doi.org/10.1038/s42003-018-0110-y

Neurosciences Discoveries that led to modern Al techniques

Alan Hodgkin and Andrew Huxley described the model in 1952 to explain the ionic mechanisms underlying the initiation and

propagation of action potentials in the squid giant axon. They received the 1963 Nobel Prize in Physiology or Medicine for this
work.
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Squid axon might be as large as Tmm in diameter
(approx. 100x in comparison with humans)



Leaky Integrate and Fire Neuron model

° Simplificatign of Hgdgkin-.HuxIey model dVo, (t) Viu (t)
e  Only one simple differential equation Cx = I(t) —
e Can be created by analog circuit => Neuromorphic computing dt Rp,
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Analogue/mixed
CMOS

Digital CMOS

Neuromorphic computing

e Neuromorphic engineering aims to create computing hardware that mimics biological nervous
systems, and it is expected to play a key role in the next era of hardware development.

Neuromorphic chips

Modelling of Application-driven
biological systems research
(analysis) (synthesis)
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Including properties
such as:

@ In-memory computing
@ Fine-grained parallelism
@ Learning in hardware

@ Event-based and
asynchronous
communication

@ Reduced precision
@ Spike-based processing
@ Adaptability

@ Leveraging noise
and stochasticity

@ Brain-inspired

Loihi is Intel’s version of what
neuromorphic hardware, designed
for brain-inspired spiking neural
networks (SNNs)

1 M Neurons
256 M Synapses
5.4 B Transistors

Realtime
73 mW

TrueNorth

IBM TrueNorth chip

TrueNorth was a neuromorphic CMOS
integrated circuit produced by IBM in
2014. It is a manycore processor
network on a chip design, with 4096
cores, each one having 256
programmable simulated neurons for
a total of just over a million neurons.



Opportunities for neuromorphic computing
algorithms and applications

Catherine D. Schuman et al

Von Neumann architecture versus Neuromorphic architecture

01001001 01001111
Binary Binary

input output

Sequential processing -— Operation _— Massively parallel processing
Separated computation and memory «——  Organization - Collocated processing and memory
Code as binary instructions <«——  Programming - Spiking neural network
Binary data <«—— Communication = Spikes
Synchronous (clock-driven) -— Timing —_— Asynchronous (event-driven)

Fig. 1| Comparison of the von Neumann architecture with the neuromorphic architecture. These two architectures have some fundamental differences
when it comes to operation, organization, programming, communication, and timing, as depicted here.



Spiking Neural Networks

using LIF neurons instead of standard neurons

New learning algorithms for unsupervised learning.

implementation of bio-inspired local learning rules such as Hebbian learning and
Spike-Time-Dependant-Plasticity (STDP), Lateral Inhibition

(a) Spiking Neural Network (b) Spiking Encoding (c) Integrate-and-fire (IF) Neuron
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Subbulakshmi Radhakrishnan, S., Sebastian, A., Oberoi, A. et al. A biomimetic neural encoder for spiking
neural network. Nat Commun 12, 2143 (2021). https://doi.org/10.1038/s41467-021-22332-8

Diehl, P. U., & Cook, M. (2015). Unsupervised learning of digit recognition using spike-timing-dependent
plasticity. Frontiers in Computational Neuroscience, 0. https://doi.org/10.3389/fncom.2015.00099
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A Path Towards Autonomous Machine Intelligence
Yann LeCun

action

percept

How could machines learn as efficiently as humans and animals?
How could machines learn representations of percepts and action plans at multiple levels of abstraction, enabling them to reason, predict,
and plan at multiple time horizons?



Liquid Time-Constant Network

Ramin Hasani et al

CSAIL, Massachusetts Institute of Technology, USA

Neural Circuits
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Designing Worm-inspired Neural Networks for Interpretable Robotic

Control
Mathias Lechner et al

C. elegans

e 302 neurons and 8000 synapses C’-e"-’g‘"’s

e sensing complex chemical input

e sleeping DO-based Neural Network
e adaptive behavior sersom K baliatons

e mechano-sensation

e controlling 96 muscles. mernestons

e How does C. elegans perform | ommand

so much with so little?

Motor neurorns

n actions
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