Publications

Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers

Brzobohaty O., Siler M., Trojek J., Chvatal L., Karasek V., Patak A., Pokorna Z., Mika F., and Zemanek P.
SCIENTIFIC REPORTS 5 (2015)

It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver particles as large as 250 nm. We offer a possible explanation based on the fact that metal nanoparticles naturally occur in various non-spherical shapes and their optical properties differ significantly due to changes in localized plasmon excitation. We demonstrate experimentally and support theoretically three-dimensional confinement of large gold nanoparticles in an optical trap based on very low numerical aperture optics. We showed theoretically that the unique properties of gold nanoprisms allow an increase of trapping force by an order of magnitude at certain aspect ratios. These results pave the way to spatial manipulation of plasmonic nanoparticles using an optical fibre, with interesting applications in biology and medicine. Download


Non-spherical gold nanoparticles trapped in optical tweezers: shape matters

Brzobohaty O., Siler M., Trojek J., Chvatal L., Karasek V., and Zemanek P.
OPTICS EXPRESS 23 (2015) 8179-8189

We present the results of a theoretical analysis focused on three-dimensional optical trapping of non-spherical gold nanoparticles using a tightly focused laser beam (i.e. optical tweezers). We investigate how the wavelength of the trapping beam enhances trapping stiffness and determines the stable orientation of nonspherical nanoparticles in the optical trap which reveals the optimal trapping wavelength. We consider nanoparticles with diameters being between 20 nm and 254 nm illuminated by a highly focused laser beam at wavelength 1064 nm and compare our results based on the coupled-dipole method with published theoretical and experimental data. We demonstrate that by considering the non-spherical morphology of the nanoparticle we can explain the experimentally observed three-dimensional trapping of plasmonic nanoparticles with size higher than 170 nm. These results will contribute to a better understanding of the trapping and alignment of real metal nanoparticles in optical tweezers and their applications as optically controllable nanosources of heat or probes of weak forces and torques. Download