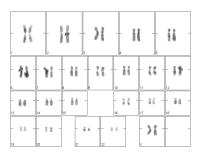
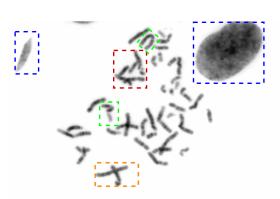

Chromosome Segmentation and Classification


Kristýna Pijáčková

Karyotyping

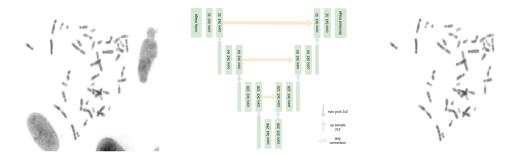
- Technique used for analyzing chromosomal structures
- Chromosomes are separated, organized and inspected for any abnormalities
- Abnormalities may lead to diagnosing specific birth defects, genetic disorders or cancer



Challenges of chromosome segmentation

- Laborious and time-consuming
- Demands high level of expertise
- Overlapping chromosomes
- Touching chromosomes
- Bent chromosomes
- Non-chromosomal objects

Segmentation pipeline



- Image denoising
- Chromosome location and cluster identification
- Instance segmentation with Mask R-CNN
- Test-Time Augmentation

Image denoising

- U-Net architecture to get rid of nucleus cells and dust particles
- Trained and tested on Biolmlab dataset from University of Padova

Chromosome location and cluster identification

- Binary mask obtained with Otsu's thresholding
- Detection and extraction of chromosomes with OpenCV bounding boxes
- Sorting of single and overlapping/touching chromosomes

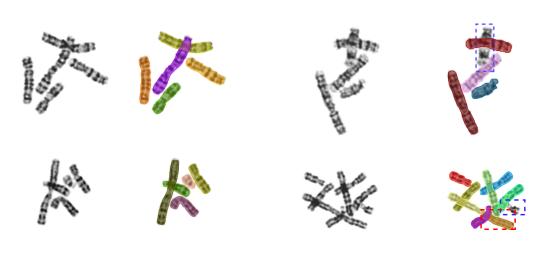
Instance segmentation

- Clinical dataset from Guangdong Women and Children's Hospital
- Mask R-CNN architecture with ResNet50 as backbone
- Flipping augmentation during training

Test-time augmentation

- Increases output precision of segmented masks
- Input image is flipped by 90°, 180°, and 270° and segmented
- Predicted masks are matched by choosing mot probable fit with IoU over 0.5
- Output masks are product of averaging the matched augmented masks

Examples of segmented chromosomes



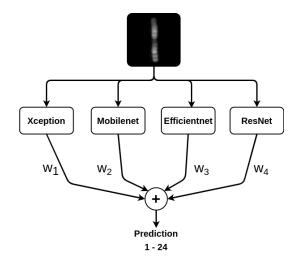
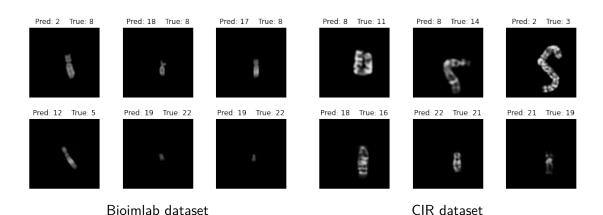

Fig. 1: Correct segmentation

Fig. 2: Incorrect segmentation

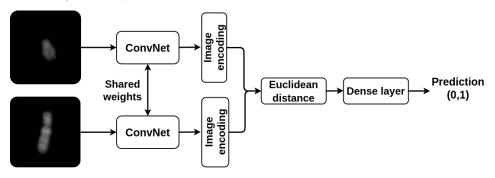
Model Ensembling for Chromosome Classification

- Improves classification results by pooling multiple models together
- Based on assumption that different, good models can extract different features
- Used models Xception,
 MobilenetV2, EfficientnetB2,
 ResNet18


Single model vs. Model ensembling

Model	Dataset	Accuracy	Dataset	Accuracy
Xception		91.92 %		96.56 %
MobilenetV2		83.46 %		90.14 %
EfficientnetB2	Biolmlab	92.29 %	CIR	95.41 %
ResNet18		84.45 %		94.50 %
Model Ensemble		94.78 %		97.48 %

Examples of misclassifications



11 / 13

Siamese network

- Can compare similarity between two images
- Top-3 accuracy ~98 % for both datasets
- Incorrectly paired chromosomes are checked and rearranged based on the similarity of the pairs

Thank you for your attention!