
Proceedings of the Student FEI 2000, Brno 2000, pp.399-401

1

Gray counter in VHDL
Ing. Ivo Viščor, 2nd year of PhD study, (ivovi@isibrno.cz)

worked out on the IREL FEE BUT
Supervisor: Doc. Ing. Jaromír Kolouch, CSc.

Abstract: This paper presents the simple structural description of the Gray counter with
variable width in VHDL.

Introduction
Programmable logic devices (PLDs) and field programmable gate arrays (FPGAs) can

be used to integrate large amounts of logic in a single IC. As the capacity of PLDs and FPGAs
is grooving, designers can no longer use Boolean equations or gate-level descriptions to
quickly and efficiently complete a design. The solution is VHDL. Very High Speed Integrated
Circuits (VHSIC) Hardware Description Language (VHDL) became standard for designing
with programmable logic devices and Application Specific Integrated Circuits (ASICs).
VHDL was established as the IEEE 1706 standard in 1987 [1]. The main advantage of VHDL
is portability of code across vendors and devices. The main disadvantage is the loosing
control of gate level circuit implementation, which is the penalty for portability.

Gray code is the code with only one bit transition between adjacent words. The direct
description of Gray counter is based on the equation extraction from the truth table. Such
solution of n-bit counter demands 2n-2 product terms [2]. Implementation may be difficult for
greater width of counter. The alternative is the using of the auxiliary bit [2]. This bit is
changed every clock period and corresponds to bit 0 of a binary counter. With assumption that
the auxiliary bit extends Gray code word to the right, the particular bit is changed whenever
the less significant bits create word 1,0,…0. The exception is MSB which is changed in
addition by word 0,…0. Another description of Gray counter use conversion of Gray code to
binary code. After the increment is done in binary code, the back conversion follows.

Description of the Gray counter in VHDL
The forms of VHDL circuit design are: behavioural description (e.g. if..than

statement), dataflow description (e.g. Boolean equations) and structural description (netlist of
blocks). The good VHDL synthesis tools find near optimal solution regardless of the form of
description [2]. Although all of the forms are used in proposed description, the structural
description is the most important. The main requirements on the design were code simplicity
and adjustable width of the counter.

 The design is based on the auxiliary bit generation, series of one-bit blocks and glue
logic for MSB generation. The basic block of the counter is one-bit block ‘gray_1’ (Fig.1.).
This block is encapsulated into a package and used repeatedly in top-level module ‘gray_n’
(Fig.2.). The top-level module is figured with counter width parameter of 3.

The one-bit block ‘gray_1’ generates the particular bit of Gray code ‘qout’ from input
signals ‘qin’ and ‘zin’ in a T-type flip-flop (Fig.1). The ‘qin’ is connected to the less
significant bit in the chain. Second generated signal is ‘zout’. The ‘zout’ represents
expression: “All the less significant bits (including auxiliary bit) are zero”. Each one-bit block
shares the same asynchronous reset and clock signals (Fig.2.). The ‘q(1)’ to ‘q(3)’ outputs are



Proceedings of the Student FEI 2000, Brno 2000, pp.399-401

2

valuable bits of the Gray code. The D-type flip-flop generates ‘q(0)’ signal which represents
the auxiliary (parity) bit. The MSB reset at the end of the cycle is assured by the OR gate.

Fig.1.  Schematic of one-bit block package ‘gray_1’

Fig.2.  Schematic of top-level module ‘gray_n’ (width = 3)

Although pictured schematics provide sufficient information to write the VHDL code,
it is not easy to fulfil the VHDL syntax, especially for the beginners. The great helper is the
VHDL help [3]. Full listing of code exceeds size of this contribution and will be presented on
the poster.

Fig.3.  Functional simulation of the VHDL code in the ModelSimXE Starter tool (width = 3)

CLK
RST

TQ

gray_1

qout

zout

qin

zin

arst clk

 &

 &

 QOUT

gray_n

 1

 ZOUT

   QIN

    ZIN

gray_1

 QOUT

 ZOUT

   QIN

    ZIN

gray_1

 QOUT

 ZOUT

 Q

    ZIN

gray_1
   qx

     z(3)

     q(3)

     z(2)      z(1)

     q(2)      q(1)

 ARST CLK  ARST CLK  ARST CLK

     q(0)

 Q\ D

CLK

SET
 ‘1‘

  z(0)

async_rst clock



Proceedings of the Student FEI 2000, Brno 2000, pp.399-401

3

Described VHDL code was successfully tested in two simulators. The Warp 4.0
software provides only postlayout (‘timing’) simulation. The VHDL code had to be fitted to a
particular device first. The Webpack from Xilinx on the opposite side provides only the
source code (‘functional’) simulation. This simulation tool is free licensed and is restricted up
to 500 rows of code. The snapshot from the functional simulation of the Gray counter is
figured at Fig.3.

Implementation of the Gray counter

The implementation of the proposed VHDL code (Tab.1.) illustrates the fact, that
small counter designs are only I/O pin limited, whilst large counters are device architecture
limited. No speed performance and compile options was explored. These results are in no way
the device benchmarks, the far more complex and definite benchmarks failed (e.g. PREP [1]).

Type Part # Description Available I/O Package Max. width of
counter (gray_n)

Note

FPGA C388P 8k gates 172 144 TQFP 170 1)
CPLD C375 128 MCells 128 160 TQFP 34 1)
PLD 22V10 10 MCells 10 24 DIP 9 1), 3)

CPLD XC95144XL 144 MCells 117 144 TQFP 103 2)
CPLD XCR3320 320 MCells 112 160 TQFP 72 2)
CPLD XCR3032A 32 MCells 28 (32) 44 TQFP 27 2), 4)

Note: 1) Vendor: CYPRESS, software: Warp 4.0.
2) Vendor: XILINX, software: WebPack (May 2000).
3) Modified VHDL code without asynchronous reset or without auxiliary bit pinout.
4) Dedicated pins for JTAG ISP lowers available I/O pins by 4.

Tab. 1. Examples of the Gray counter implementation

Conclusion

The presented VHDL design of the Gray counter with variable width is as simple as
possible and uses all main technique of VHDL programming. The design is therefore suitable
for education purposes. Implementation examples demonstrate fact, that even the VHDL
software at no charge (Webpack) can be applicable for the first VHDL experiments.

Acknowledgement

This work was supported by the grant no. 102/00/1262 of the Grant Agency of the
Czech Republic.

References

[1] Skahill, K.: VHDL for programmable logic. Menlo Park, CA: Addison-Wesley
       Publishing Company, 1996

[2]  Kolouch, J.: Čítače pracující v Grayově kódu realizované v obvodech PLD. Brno: IREL
       FEE BUT, 1999

[3]  VHDL Language Reference Guide, ver. 1.06., windows help file, 1998



Proceedings of the Student FEI 2000, Brno 2000, pp.399-401

4

Appendix A:   VHDL code listing of the one-bit block (gray_1)

-- File: gray_1.vhd
-- One bit block for the Gray counter gray_n.vhd
-- 2/2000 IVOVI

-- qout: One bit output of the counter
-- zout: 1, if all the less significant bits are zero

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

PACKAGE pkggray_1 IS
  COMPONENT gray_1
    PORT( arst, clk, qin, zin : IN STD_LOGIC;
          qout                : INOUT STD_LOGIC;
          zout                : OUT STD_LOGIC);
  END COMPONENT;
END pkggray_1;

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY gray_1 IS
  PORT( arst, clk, qin, zin : IN STD_LOGIC;
        qout                : INOUT STD_LOGIC;
        zout                : OUT STD_LOGIC);
END gray_1;

ARCHITECTURE archgray_1 OF gray_1 IS
BEGIN
  PROCESS(arst, clk)
    BEGIN
    IF arst='1' THEN
      qout <= '0';
    ELSIF clk'EVENT AND clk='1' THEN
      qout <= qout XOR (qin AND zin);
    END IF;
  END PROCESS;
  zout <= zin AND NOT qin;
END archgray_1;



Proceedings of the Student FEI 2000, Brno 2000, pp.399-401

5

Appendix B:   VHDL code listing of the top-level of Gray counter (gray_n)

-- File: gray_n.vhd
-- Gray counter with variable width (generic width)
-- 2/2000 IVOVI

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY gray_n IS GENERIC(width: INTEGER:=3);
  PORT( async_rst, clock : IN STD_LOGIC;
        q                : INOUT STD_LOGIC_VECTOR(width DOWNTO 0));
END gray_n;

ARCHITECTURE archgray_n OF gray_n IS
  COMPONENT gray_1 PORT( arst, clk, qin, zin : IN STD_LOGIC;
                         qout                : INOUT STD_LOGIC;
                         zout                : OUT STD_LOGIC);
  END COMPONENT;
  -- inner interconnection of 1-bit sections
  SIGNAL z  : STD_LOGIC_VECTOR(width DOWNTO 0);
  -- auxiliary signal for MSB
  SIGNAL qx : STD_LOGIC;
BEGIN
  -- less significant bits
  create_lsb: FOR i IN 1 TO width-1 GENERATE

                createbit: gray_1 PORT MAP( async_rst, clock,
                                            q(i-1), z(i-1),
                                            q(i), z(i));

END GENERATE;
  -- most significant bit
  create_msb: gray_1 PORT MAP( async_rst, clock,
                               qx, z(width-1),
                               q(width), z(width));
  -- auxiliary signal for MSB
  qx <= q(width-1) OR q(width);
  -- parity bit generation
  PROCESS(async_rst, clock)
    BEGIN
    IF async_rst='1' THEN
      q(0) <= '1';
    ELSIF clock'EVENT AND clock='1' THEN
      q(0) <= NOT q(0);
    END IF;
  END PROCESS;
  z(0) <= '1';
END archgray_n;


